On Convergence of Stochastic Processes
نویسنده
چکیده
where £iX) is the distribution function of the random variable X,f( ) is a real-valued function 5 continuous almost everywhere (p), and the limit is in the sense of the usual weak convergence of distributions. Equation (2) is usually the real center of interest, for many " limit-distribution theorems" are implicit in it. It is clear that for given {pn} and p, the better theorem of this kind would be the one in which (2) is proved for the larger class of functions /.In this paper we shall show that certain known "invariance principles" can under some hypotheses be improved by considerably enlarging the class of functions for which (2) holds. This will be done by considering spaces S other than the customary ones. For example, in studying convergence to the Wiener process, it is usual to let S be the space (denoted 6) of continuous functions with the uniform topology. However, this choice does not fully exploit the pleasant properties of the Wiener path-functions, which are not only continuous but also Holder continuous of any order up to 1/2. Therefore we shall attempt to use spaces Lipa in place of 6 as the function-space 5. When weak convergence can be established using such spaces, the class of functionals for which (2) is known to hold becomes much larger than before. To carry out the idea sketched above it is necessary to have a criterion which guarantees that the sample functions of a stochastic process are a.s.
منابع مشابه
Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملComplete convergence of moving-average processes under negative dependence sub-Gaussian assumptions
The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملA Statistical Study of two Diffusion Processes on Torus and Their Applications
Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...
متن کاملComputational method based on triangular operational matrices for solving nonlinear stochastic differential equations
In this article, a new numerical method based on triangular functions for solving nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...
متن کامل